ๅฎŸ็›ด่‹ฆ้—˜ ใ‚ทใƒณใ‚ปใƒชใƒ†ใ‚ฃใจใ‚นใƒˆใƒฉใ‚ฐใƒซ

Compact Operator converts weak convergence into convergence.

This is a conclusion I coincidentally discovered when I was working my homework for the functional analysis course. It is so nice and impressive that Iโ€™m going to inscribe it here: the compact operator converts weak convergence into convergence.

Before proving, Iโ€™m going to give some Lemmas for the convenience.

Lemma 1:

Statement:

H\mathcal{H} is a Hilbert space, (xn)nโ‰ฅ1,x0,xโˆˆH(x_n)_{n\ge1},x_0,x \in \mathcal{H}, xnโ‡€x0x_n\rightharpoonup x_0 and xnโ‡€xx_n\rightharpoonup x as nโ†’โˆžn\rightarrow \infty, then x0=xx_0=x. That is to say, the weak limit is unique.

Proof:

Suppose xnโ‡€x0x_n\rightharpoonup x_0 and xnโ‡€xx_n\rightharpoonup x as nโ†’โˆžn\rightarrow \infty, then for any yโˆˆHy\in\mathcal{H}, (xn,y)โ†’(x0,y)(x_n,y)\rightarrow(x_0,y) and (xn,y)โ†’(x,y)(x_n,y)\rightarrow(x,y) as nโ†’โˆžn\rightarrow \infty.

By the uniqueness of limits, (x0,y)=(x,y)(x_0,y)=(x,y) for all yโˆˆHy\in\mathcal{H}.

Then, (x0โˆ’x,y)=0(x_0-x,y)=0 for all yโˆˆHy\in\mathcal{H}. Let y=x0โˆ’xy=x_0-x, then โˆฅx0โˆ’xโˆฅ=(x0โˆ’x,x0โˆ’x)=0\|x_0-x\|=\sqrt{(x_0-x,x_0-x)}=0. This implies x0โˆ’x=0x_0 -x=0, i.e. x0=xx_0=x.

Lemma 2:

Statement:

H\mathcal{H} is a Hilbert space, (xn)nโ‰ฅ1,x0โˆˆH(x_n)_{n\ge1},x_0 \in \mathcal{H}, xnโ‡€x0x_n\rightharpoonup x_0 as nโ†’โˆžn\rightarrow \infty, then (xn)nโ‰ฅ1(x_n)_{n\ge1} is bounded.

Proof:

Let Tn(โ‹…)=(xn,โ‹…)T_n(\cdot)=(x_n,\cdot). It is clear that TnT_n is continuous linear operators from H\mathcal{H} to H\mathcal{H} and โˆฅTnโˆฅ=โˆฅxnโˆฅ\|T_n\|=\|x_n\| for each nn.

xnโ‡€x0โ‡”(xn,y)โ†’(x0,y)x_n\rightharpoonup x_0 \Leftrightarrow (x_n,y)\rightarrow (x_0,y) for all yโˆˆHy\in\mathcal{H} . So (xn,y)(x_n,y) is bounded for all yโˆˆHy\in \mathcal{H}.

Then supโกโˆฅTnyโˆฅ=supโก(xn,y)<โˆž\sup\|T_ny\|=\sup(x_n,y)<\infty for all yโˆˆHy\in \mathcal{H}.

By the Banach-Steinhaus uniform boundedness principle, supโกโˆฅTnโˆฅ<โˆž\sup\|T_n\|<\infty, thus supโกโˆฅxnโˆฅ<โˆž\sup\|x_n\|<\infty, i.e. (xn)nโ‰ฅ1(x_n)_{n\ge1} is bounded.

Proposition:

Now, Iโ€™m going to state the proposition and prove it.

Statement:

H\mathcal{H} is a Hilbert space, (xn)nโ‰ฅ1,x0โˆˆH(x_n)_{n\ge1},x_0 \in \mathcal{H}. xnโ‡€x0x_n\rightharpoonup x_0 as nโ†’โˆžn\rightarrow \infty and KK is a compact operator from H\mathcal{H} to H\mathcal{H}, then Kxnโ†’x0Kx_n\rightarrow x_0.

Proof:

Suppose that KxnKx_n doesnโ€™t converge to Kx0Kx_0, then there will be an ฮต>0\varepsilon>0 such that (Kxn)โˆ–B(x0,ฮต)(Kx_n)\setminus B(x_0,\varepsilon) has infinitely many entries, denoted (Kxn)โˆ–B(x0,ฮต)(Kx_n)\setminus B(x_0,\varepsilon) as (Kxnj)(Kx_{n_j}). Since xnโ‡€x0x_n \rightharpoonup x_0, by lemma2, (xn)(x_n) is bounded. Since KK is compact, (Kxn)(Kx_n) must be precompact, then (Kxnj)(Kx_{n_j}) would has a subsequence (Kxnjk)(Kx_{n_{j_k}}) converges to some point xโˆˆHx\in\mathcal{H}. Moreover, โˆฅxโˆ’Kx0โˆฅโ‰ฅฮต\|x-Kx_0\|\ge \varepsilon.

Since Kxnjkโ†’xKx_{n_{j_k}}\rightarrow x as kโ†’โˆžk\rightarrow\infty, Kxnjkโ‡€xKx_{n_{j_k}}\rightharpoonup x as kโ†’โˆžk\rightarrow\infty.

For any xโˆˆHx\in\mathcal{H},

(x,Kxnjkโˆ’Kx0)=(x,K(xnjkโˆ’x0))=(Kโˆ—x,xnjkโˆ’x0)=0\begin{align*} (x,Kx_{n_{j_k}}-Kx_0)&=(x,K(x_{n_{j_k}}-x_0))\\ &=(K^*x,x_{n_{j_k}}-x_0)\\ &=0 \end{align*}

as kโ†’โˆžk\rightarrow \infty by the weak convergence of xnx_n. Then, Kxnjkโ‡€Kx0Kx_{n_{j_k}}\rightharpoonup Kx_0.

By the uniqueness of weak limit, Kx0=xKx_0 =x, which is contradictory to โˆฅxโˆ’Kx0โˆฅโ‰ฅฮต\|x-Kx_0\|\ge \varepsilon.

Therefore, what we supposed is wrong, i.e. KxnKx_n doesnโ€™t converge to Kx0Kx_0.

Consequences

This proposition is so beautiful! So what? Iโ€™m going to provide an example of an application here.

Statement:

H\mathcal{H} is a Hilbert space, (xn)nโ‰ฅ1,x0,(yn)nโ‰ฅ1,y0โˆˆH(x_n)_{n\ge1},x_0,(y_n)_{n\ge1},y_0 \in \mathcal{H}. xnโ‡€x0x_n\rightharpoonup x_0 as nโ†’โˆžn\rightarrow \infty and KK is a compact operator from H\mathcal{H} to H\mathcal{H}, then (xn,Kyn)โ†’(x0,Ky0)(x_n,Ky_n)\rightarrow(x_0,Ky_0) as nโ†’โˆžn\rightarrow\infty.

Proof:

By the proposition above, KynKy_n converges to Ky0Ky_0, then

โˆฃ(xn,Kyn)โˆ’(x0,Ky0)โˆฃ=โˆฃ(xn,Kynโˆ’Ky0)+(xn,Ky0)โˆ’(x0โˆ’xn,Ky0)โˆ’(xn,Ky0)โˆฃ=โˆฃ(xn,Kynโˆ’Ky0)โˆ’(x0โˆ’xn,Ky0)โˆฃโ‰คโˆฃ(xn,Kynโˆ’Ky0)โˆฃ+โˆฃ(x0โˆ’xn,Ky0)โˆฃโ‰คโˆฅxnโˆฅโˆฅKynโˆ’Ky0โˆฅ+โˆฃ(x0โˆ’xn,Ky0)โˆฃโ†’0\begin{align*} \left|(x_n,Ky_n)-(x_0,Ky_0)\right|&=\left|(x_n,Ky_n-Ky_0)+(x_n,Ky_0)-(x_0-x_n,Ky_0)-(x_n,Ky_0)\right|\\ &=\left|(x_n,Ky_n-Ky_0)-(x_0-x_n,Ky_0)\right|\\ &\le\left|(x_n,Ky_n-Ky_0)\right|+\left|(x_0-x_n,Ky_0)\right|\\ &\le\|x_n\|\|Ky_n-Ky_0\|+\left|(x_0-x_n,Ky_0)\right|\\ &\rightarrow0 \end{align*}

as nโ†’โˆžn\rightarrow\infty. This implies (xn,Kyn)โ†’(x0,Ky0)(x_n,Ky_n)\rightarrow(x_0,Ky_0) as nโ†’โˆžn\rightarrow\infty.